Explanatory opinions: to whom or what is all the fuzz about?

Filipa Peleja
Yahoo Labs
Barcelona
Spain
peleja@yahoo-inc.com

Ioannis Arapakis
Yahoo Labs
Barcelona
Spain
arapakis@yahoo-inc.com

João Magalhães
NovaLincs, Dep. de Informática
Universidade Nova de Lisboa
Caparica, Portugal
jm.magalhaes@fct.unl.pt

Exploiting sentiment relations to improve the accuracy of sentiment analysis has caught the interest of recent research. When expressing their opinions, users apply different sentence syntactic constructions styles. This analysis leverages on a sentiment lexicon that includes general sentiment words that characterize the overall sentiment towards the targeted named-entity. However, in most cases, target entities are themselves part of the sentiment lexicon, creating a loop from which it is difficult to infer the overall sentiment to the target entities. We propose the application of conditional random fields (CRF) to predict opinion target labels. More specifically, we exploit a set of opinion patterns to extend an opinion word lexicon and then propose to apply a CRF algorithm to detect the interactions between opinion expressions and opinion targets.

1. INTRODUCTION

Social media has extended people’s online interactions beyond simply sharing and commenting on what is happening around them, to exchanging advice and opinions with other members of the same sociosphere. This phenomenon has sparked a relationship between people's opinions and their opinion target. The information targeting the opinion targets is generally controlled by users and consumers (Jansen et al. 2009). Unlike user generated text, where the user (opinion holder) expresses freely her opinion, news articles contain a more structured text with one or more opinion holders targeting several opinion targets. This paper addresses the problem of classifying accurately the sentiment in news articles, as well as the respective sentiment target. The detection of opinion holders and targets in news articles will allow to have a better understanding of the relations between people, organizations and/or countries (Kim and Hovy (2006)). Figure 1 illustrates the opinions expressed in a news article about Internet regulations. In this example, we observe that the opinions expressed in the news article target multiple opinion targets, e.g., President Obama and U.S. data sector.

The analysis of opinionated text, also known as subjective text, involves the detection of words, phrases or sentences that express a sentiment. Although this area has been researched in academia, the problem is still far from being solved Liu (2012). One of the main challenges is that opinionated language varies over a broad range of discourse, and a system with a fixed vocabulary will not be enough to represent users’ opinion. Another challenge is to identify relevant mentions to opinion targets which are accompanied by related sentiment words. From an algorithmic perspective, the challenge is to analyse how these sentiment words affect the public image of the opinion targets. Previous work (Hu and Liu (2004); Liu (2012)) has introduced significant advances in detecting product aspects or features, and it is reasonable to apply such methods by analysing how sentiment words affect named entities’ reputation. However, unlike products, opinions about named entities are not structured around a fixed set of aspects or features, which implies a more challenging task (Albornoz et al. (2012)).

© The Authors. Published by BISL.
2. RELATED WORK

Sentiment analysis employs various techniques for detecting words that communicate a positive or negative emotion. These words are commonly known as sentiment words or opinion words. Beyond words, n-grams (contiguous sequence of n words) and idiomatic expressions are commonly used as sentiment words, such as for example “terrible”, “quite wonderful”, and “break a leg”. At document- or sentence- level, sentiment words can be used to predict sentiment classes for users opinions (Liu (2012)). Unlike sentiment analysis at document- or sentence- level, entity- or aspect-level allows for a fine-grained analysis. Entity- or aspect-level sentiment analysis captures specific product features that users dislike or like (Hu and Liu (2004)). For example, Turney (2002) proposed a document level approach to evaluate reviews polarity in which an unsupervised learning algorithm was used to evaluate review’s polarity. For each review, the authors compute the average polarity of its constituent words or phrases. Other works (Pang et al. (2002); Heerschop et al. (2011)) have addressed the sentiment analysis task by using a document-level approach. A common use of sentence-level sentiment analysis is to capture subjective sentences (Wiebe et al. (1999)). When classifying subjectivity, the goal is to distinguish between sentences that express factual information (objective) and sentences that express an opinion (subjective) (Hatzivassiloglou and Wiebe (2000)).

The task of detecting overall sentiment, opinion holders and targets implies several steps (Liu (2012)). In a sentence-level sentiment analysis approach, Meena and Prabhakar (2007) showed that rules based on atomic sentiments of individual phrases can be helpful to decided the overall sentiment of a sentence. However, in Meena at al. work, only adjectives and verbs were considered as features, which implies that only those can be related to the opinion target. Furthermore, as Wilson et al. (2009) showed, other word families (e.g., nouns) may share dependency relations with opinion targets (also referred as aspects), which might be indicative of the sentiment expressed towards those terms. In another work by Gildea and Jurafsky (2002), the authors introduced a system based on statistical classifiers to identify semantic relationships. Their system analyses the prior probabilities of various combinations of semantic roles (predicate verb, noun, or adjective) to automatically label domain-specific semantic roles such as Agent, Patient, Speaker or Topic. Similarly to the semantic roles’ detection introduced by Gildea et al., we propose to analyze sentences lexical and syntactic relations to automatically label opinion targets.

Table 1: Patterns to capture opinion-phrases (N is a noun, A is an adjective, V is a verb, h is a head term, m is a modifier, and <h, m> is an opinion phrase)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. amod(N, A) → < N, A ></td>
<td>Modifying an opinion word</td>
</tr>
<tr>
<td>2. acomp(V, A) + nsubj(V, N) → < N, A ></td>
<td>Opinion modifier followed by a noun</td>
</tr>
<tr>
<td>3. cop(A, V) + nsubj(A, N) → < N, V ></td>
<td>Copula followed by a noun</td>
</tr>
<tr>
<td>4. dobj(V, N) + nsubj(V, N0) → < N, V ></td>
<td>Direct object followed by a noun</td>
</tr>
<tr>
<td>5. < h1, m > + conj and(h1,h2) → < h2, m ></td>
<td>Conjunct expression</td>
</tr>
<tr>
<td>6. < h, m1 > + conj and(h1, h2) → < h, m2 ></td>
<td>Conjunct expression</td>
</tr>
<tr>
<td>7. < h, m > + neg(m, not) → < h, not + m></td>
<td>Negation expression</td>
</tr>
<tr>
<td>8. < h, m > + nn(h, N) → < N + h, m ></td>
<td>Noun phrase expression</td>
</tr>
<tr>
<td>9. < h, m > + nn(N, h) → < n + N, m ></td>
<td>Noun phrase expression</td>
</tr>
</tbody>
</table>

The proximity between an opinion target and a single opinion word is key to building the opinion target semantic roles. For this reason, we have used SentiWordNet, which is a popular sentiment dictionary introduced by Esuli and Sebastiani (2006). SentiWordNet is a lexicon created semi-automatically by means of linguistic classifiers and human annotation. In SentiWordNet, each synset is annotated with its degree of positivity, negativity and neutrality.

4. THE PROPOSED MODEL

An important first step to extracting opinion targets in news articles, is understanding how an opinion word is semantically related to an opinion target. To this end, we propose a sentence-level approach, where our method will identify the opinion words and opinion phrases (Section 3). Figure 2 provides an example on how we aim to decompose each sentence.

We suggest to deal with the task of identifying opinion targets as a sequence labelling problem. The problem of opinion target extraction as a sequence labelling task using CRFs, is defined as follows. Given a sequence of tokens, \(x = x_1 x_2 ... x_n \) we need to generate a sequence of labels \(y = y_1 y_2 ... y_n \). To train the model, a set of labels are defined as ‘OW’ and ‘OT’, where ‘OW’ corresponds to an opinion word or phrase, and ‘OT’ to an opinion target. Similarly to Choi et al. (2005), opinion holders detection model, we create a linear-chain CRF...
The U.S. data sector is the envy of the world, administering a powerful boost to consumer welfare, generating high-paying jobs and...

Figure 2: An overview of our opinions words extraction.

Based on an undirected graph $G = (V, E)$, where for each n tokens of a sentence V is the set of random variables $Y = \{Y_i|1<i \leq n\}$. $E = \{(Y_{i-1}, Y_i)|1<i \leq n\}$ is the set of $n-1$ edges forming a linear chain. According to Lafferty et al. (2001) the conditional probability of a sequence of labels y given a sequence of tokens x is given by:

$$P(y|x) = \frac{1}{Z_x} \exp \left(\sum_{i,k} \lambda_k f_k(y_{i-1}, y_i, x) + \sum_{i,k} \lambda'_k f'_k(y_i, x) \right)$$

(1)

$$Z_x = \sum_y \exp \left(\sum_{i,k} \lambda_k f_k(y_{i-1}, y_i, x) + \sum_{i,k} \lambda'_k f'_k(y_i, x) \right)$$

(2)

where Z_x is a normalization constant for each sentence x, $f_k(\ldots)$ is a binary feature indicator function, λ_k is the weight of each feature function, and k and k' are the number of features defined for edges and nodes.

5. EXPERIMENTS

5.1. Dataset

The goals are experiments first, to see how accurately we can perform a binary sentiment classification, and second, to examine the correlation between opinion phrases and opinion targets. For this analysis, one challenge to overcome is the lack of labeled data. To this end, we have selected a labeled dataset from SemEval-2014 challenge. This dataset contains opinionated sentences from the restaurants domain, and it is part of the Task 4: Aspect Based Sentiment Analysis of the abovementioned challenge 1. In addition the dataset has a total of 1601 annotated sentences in which 1198 and 403 are positive and negative respectively. In addition, the dataset presents a mean of 66 characters and 12 words per sentence.

5.2. Sentiment classification

For our sentiment classification task, the sentences are classified according to a deterministic binary classification in which sentences are classified as either positive or negative. To classify the sentences we applied a 10-fold cross validation using the Weka 2 implementation of SVM (Support Vector Machines). Table 2 shows the initial sentiment classification results.

Table 2: Sentiment classification of comments from restaurant reviews.

<table>
<thead>
<tr>
<th>Polarity</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>0.792</td>
<td>0.915</td>
<td>0.849</td>
</tr>
<tr>
<td>negative</td>
<td>0.583</td>
<td>0.331</td>
<td>0.422</td>
</tr>
</tbody>
</table>

We note, that the classifier performs better on positive sentences. One reason for this could be the imbalanced nature of the dataset. Also, as it has been demonstrated by previous work (Liu (2012)), users tend to frequently apply the same opinion word both in positive and negative contexts. This sentiment classification experiment aims to validate the quality of the selected opinion words and opinion phrases in a sentiment classification task.

5.3. Opinion phrases and opinion targets

In the present work we argue that there are many semantic relations between opinion words and opinion phrases that semantic relations analysis is not able to capture, i.e. subject and object relations. Also, as expected, we notice an intersection between opinion phrases and opinion targets. For example, in the sentence “The service was excellent and the food was delicious.” the labeled opinion targets are “food” and “service” and the extracted opinion phrases are “food delicious”, ”service excellent” and “service delicious”. In this context, an opinion phrase is defined as a pair (aspect, opinion), therefore aspect has a high probability to be an opinion target. For the extracted opinion phrases and labeled opinion targets we observe a Jaccart similarity of 0.28. Here, Jaccart similarity refers to the quotient between the intersection of opinion-phrases and targets. Although we observe intersection between these objects there are many opinion targets that are not within the obtained opinion phrases.

5.4. Future work: Opinion targets in news articles

We observed that grammatical dependencies can be used to extract aspects and opinion phrases. However, it is noticeable that a more in-depth approach should be applied to improve the opinion
targets extraction. As future work, we aim at developing the proposed CRF model to obtain a higher coverage of the opinion targets. Finally, for the experiments shown in this section, we used a dataset from the restaurants’ domain. In addition, the sentences were extracted from users’ reviews, which have a structure that is considerable different to that observed in news articles. We also aim at obtaining an labeled news articles dataset to extend the opinion prediction model to this domain as well.

6. CONCLUSIONS

In this paper we discussed techniques to detect opinion targets. In opinionated sentences, an opinion target is the entity that is targeted by the sentiment expressed in the sentence. Our experimental results show that opinion phrases present an clear intersection with opinion targets. However, it is evident that there are many opinion targets that are not captured by this method. We believe that this is because fixed language pattern rules are not enough to cover the range of discourse used to express an opinion, as well as the respective target. In the future we plan to extend our work to a news articles dataset that is characterized by a different type of discourse, and apply a method based on CRF to detect opinion targets language patterns.

REFERENCES

