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Points of interest are an important requirement for location-based services, yet they are editorially curated
and maintained, either professionally or through community. Beyond the laborious manual annotation task,
further complications arise as points of interest may appear, relocate, or disappear over time, and may be
relevant only to specific communities. To assist, complement, or even replace manual annotation, we propose
a novel method for the automatic localization of points of interest depicted in photos taken by people across
the world. Our technique exploits the geographic coordinates and the compass direction supplied by modern
cameras, while accounting for possible measurement errors due to the variability in accuracy of the sensors
that produced them. We statistically demonstrate that our method significantly outperforms techniques
from the research literature on the task of estimating the geographic coordinates and geographic footprints
of points of interest in various cities, even when photos are involved in the estimation process that do not
show the point of interest at all.
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1. INTRODUCTION
The world is filled with areas of interest, vista points, and places to visit. While his-
torically lists of interesting places have been manually aggregated by sources like the
UNESCO1, the Lonely Planet2, and Wikipedia3, the task is time-consuming and labori-
ous, especially if global coverage is desired. Furthermore, points of interest (POIs) may
relocate or disappear over time, and new ones may be formed, requiring the annotation
process to be periodically repeated. Events are, in essence, also POIs, albeit with a lim-

1http://whc.unesco.org/en/list/
2https://www.lonelyplanet.com/
3https://www.wikipedia.org/
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Fig. 1: The Musée du Louvre is only represented as a single geographic coordinate by
Google Maps (left), whereas in reality it covers a relatively large area. Its geographic
footprint on the surface of our planet (right) consists of two polygons, of which one (the
pyramid, shown in magenta) is convex and the other (the palace, shown in orange) is
concave and contains multiple holes.

ited lifetime. Check-ins on Foursquare, tweets sent on Twitter, and photos uploaded to
Flickr reveal locations that people consider to be significant enough to create content,
making social and community-based websites an ideal source for measuring location
engagement. Techniques for automatic localization of POIs based on social signals can
therefore assist, complement, or may even replace manual annotation.

A POI is traditionally represented by either its geographic center or by its bound-
ing box. However, both these representations insufficiently capture the actual location
of a POI. Namely, a geographical center does not give any indication of the actual
landmass a POI covers, while a bounding box may greatly overstate its surface area.
Furthermore, the geographic footprint of a POI is not necessarily formed by a single
convex and holeless polygon (see Figure 1), such that its center may fall outside of its
footprint. In this article we will focus on POI location estimation from two different
perspectives:

(1) We address the problem of correctly localizing a POI on a map. We require local-
ization techniques to produce a single coordinate per POI, where this coordinate
ideally falls inside its geographic footprint, or at least is as close as possible to it.

(2) We address the problem of correctly capturing the landmass of a POI. We require
localization techniques to produce one or more areas per POI, where their union
ideally matches its geographic footprint, or at least overlaps it as much as possible.

People take and upload an astounding number of photos every day, covering a large
portion of the globe (see Figure 2). To Facebook alone more than 250 billion photos
have been uploaded, and it receives over 350 million new photos every single day on
average [Facebook et al. 2013]. In recent years a variety of applications have been pro-
posed that exploit the locations of where photos have been taken, ranging from char-
acterizing places [Hollenstein and Purves 2010] and discovering events [Rattenbury
et al. 2007] to constructing touristic itineraries [De Choudhury et al. 2010]. Consider-
ing that a substantial number of photos are travel-related [Ahern et al. 2007], many
of these photos are likely to show POIs. We will leverage such photos to automatically
and accurately determine the locations of POIs around the world.

Modern cameras, and in particular cameraphones, are often equipped with a GPS
chip, a device that measures the position of the camera in terms of degrees longitude
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Fig. 2: Global coverage of a sample of georeferenced Flickr photos. One Million Creative
Commons Geo-tagged Photos by David Shamma cbd https://flic.kr/p/o1Ao2o.

and latitude. Each time a photo is taken the camera stores the last known position
as Exif metadata alongside the image pixels; a photo is georeferenced (or geotagged)
when it is associated with a geographic coordinate. Camera position information can
be used to estimate the location of a POI, e.g. by clustering the coordinates where
photos were taken [Crandall et al. 2009]. The latest cameras also include a digital
compass, a sensor that measures the direction the camera is facing, and upon photo
capture the last known direction also gets embedded into the Exif metadata; a photo is
oriented when it is associated with a compass direction. Together, the camera position
and orientation information open up new opportunities for location estimation, e.g. by
intersecting the fields of view of multiple cameras [Epshtein et al. 2007].

In this article we propose a novel method that probabilistically models the lines of
sight of cameras and their intersections to estimate the location of a POI. Here, with
line of sight we refer to the center line of the field of view, and with field of view to
the extent of the world observable by the camera. Our method essentially first con-
structs an individual weight map for each camera based on its orientation and posi-
tion, where each location in the map reflects how likely it was seen by the camera, and
then combines all individual maps into a single collective weight map. To estimate the
geographic coordinate of a POI our method then inspects the aggregated weight map
to identify the location that was most often seen by all cameras, while to estimate the
geographic footprint of a POI our method thresholds the aggregated weight map to
define the extent of its boundaries. Our method, when modeling the lines of sight and
their intersections, takes the inaccuracies of compass and GPS sensor measurements
into account, as well as off-center framing of the POI by the photographer.

The remainder of this article is organized as follows. In Section 2 we first discuss
related work. In Section 3 we investigate how people take photos of POIs in terms of
camera position, camera orientation, and photo composition, and Section 4 we present
our novel method in detail. In Section 5 we evaluate the performance of our method
against several baselines from the literature on the tasks of coordinate and footprint
estimation, and in Section 6 we finally conclude.
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2. RELATED WORK
Gazetteers, such as GeoNames4 and OpenStreetMap5, contain millions of POIs con-
tributed from various authoritative and non-authoritative data sources, ranging
across landmarks, mountains, restaurants, schools and places of worship. While such
gazetteers can be used to lookup where POIs are located in the world, researchers
have analyzed various types of user-generated content to uncover locations that peo-
ple themselves consider to be of importance [Mummidi and Krumm 2008; Rae et al.
2012]. They have further looked into separating places from events [Rattenbury et al.
2007; Quack et al. 2008; Rattenbury and Naaman 2009; Papadopoulos et al. 2011], as
well as distinguishing between periodic and aperiodic events [Chen and Roy 2009].

Georeferenced photos have been used in a variety of research endeavors [Luo et al.
2011; Zheng et al. 2011], such as studying vernacular geography [Hollenstein and
Purves 2010], visually describing the essence of cities [Doersch et al. 2012], orga-
nizing photo albums [Naaman et al. 2004], understanding where and how people
travel [Popescu et al. 2009], as well as constructing travel itineraries [De Choudhury
et al. 2010], to name just a few. At present, only a relatively small percentage of photos
has a GPS position (≈8% based on a recent multi-million sample of public Flickr photos
we inspected), and an even smaller percentage has a compass orientation (≈2%). This
notwithstanding, their relative proportions are on the rise due to the addition of GPS
and compass sensors to cameras, as well as due to the increased use of smartphones
that have these sensors already built in. To address this lack of geographic informa-
tion for the majority of photos, methods have been proposed to predict the location
where a photo was taken [Serdyukov et al. 2009; Van Laere et al. 2010], as well as to
estimate [Kosecká and Zhang 2002; Cham et al. 2010; Luo et al. 2010] and correct er-
roneous [Wang et al. 2013b] camera orientations. Early location estimation techniques
achieved median errors on the order of 500km [Hays and Efros 2008], while a recent
approach reduced that to just 2km [Popescu 2013]. Despite these promising advances,
the predicted positions and orientations of photos are not yet reliable enough for ap-
plications that need street-level accuracy.

POIs often play a prominent role in research using georeferenced photos, where
automatically detecting, recognizing and summarizing POIs by analyzing photos has
been an active research topic for many years [Jaffe et al. 2006; Kennedy and Naaman
2008; Li et al. 2009; Zheng et al. 2009; Rudinac et al. 2011; Raguram et al. 2011]. To
automatically detect POIs from sets of photos, clustering methods have typically been
used to isolate areas of high photo density, for instance k-means [Rattenbury and Naa-
man 2009], X-means [Popescu and Shabou 2013], P-DBSCAN [Kisilevich et al. 2010],
mean-shift [Crandall et al. 2009] and spectral [Yang et al. 2011] clustering, where
each formed cluster may be considered a POI. Besides clustering, content-based analy-
sis has also been employed to identify locations of interest, e.g. by integrating textual,
visual, user, and cluster analysis [Popescu and Shabou 2013] to obtain accurate esti-
mates.

The 3D reconstruction of scenes using georeferenced photos has attracted substan-
tial attention in the last few years [Snavely et al. 2006, 2008; Agarwal et al. 2009;
Wang et al. 2013a], where a 3D model is formed by triangulating feature correspon-
dences between photos that were taken of the same scene from a variety of positions
and orientations. By exploiting the positions of all contributing photos, the model it-
self can be properly positioned in the world as well, where additional data sources
such as satellite imagery [Kaminsky et al. 2009] or Google Street View [Wang et al.
2013a] can further improve alignment to within a few meters of its actual location.

4http://www.geonames.org
5http://www.openstreetmap.org
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While reconstructing a scene is a very computationally intensive task, recent efforts
have managed to considerably speed up the process [Crandall et al. 2013; Heinly et al.
2015], with scenes containing up to 5,000 photos finishing in less than an hour using a
high-end machine [Wu 2013]. Note that it is also possible perform a near-exact recov-
ery of the actual position and orientation of a camera from a reconstructed scene; this
can be done for any camera that captures a photo of the scene, whether or not it has a
GPS or compass sensor itself.

In the literature we identified three articles that propose techniques exploiting the
compass direction to perform POI discovery. The compass clustering method [Lac-
erda et al. 2012] detects POIs by clustering the intersections between the lines of
sight that reflect the directions in which the photos were taken. The geo-relevance
method [Epshtein et al. 2007] weights locations in the world by the frequency with
which they lie within the fields of view of the cameras, after which the area with the
highest frequency is identified. Two similar techniques were also presented by Hao
et al. [2014], which principally focused on georeferenced and oriented video sequences.
Our work also exploits the camera position and orientation, although we additionally
take into account the possibility of errors introduced by the sensors that produced
these measurements, as well as different styles of photo composition.

3. PHOTO CAPTURE PROPERTIES
Leading up to this article we had looked at the geographic distributions and the con-
tent of photos tagged with the name of a landmark (see Figure 3). We made three core
observations, namely that (i) a substantial number of photos do not show the land-
mark at all, (ii) the cameras that captured the photos showing the landmark occasion-
ally do not contain it within their fields of view according to their supposed position
and orientation, and (iii) yet, the lines of sight of cameras that took landmark photos
overall seem to converge to a single region of interest. The first of our observations
can likely be attributed to people simply tagging all photos they took on the same day
or in the same city with the name of the landmark, while the second observation sug-
gests that field of view mismatches may be caused by position and orientation sensor
errors, and/or due to how people frame landmarks in their photos. In this section we
look deeper into sensor quality, as well as into photo composition rules, and perform
an analysis of how landmark and non-landmark photos differ from each other.

3.1. Photo position and orientation
The precision of digital sensors supplying measurements such as longitude and lat-
itude coordinates can vary depending on manufacturing quality, structural interfer-
ence, atmospheric conditions, and signal reception. In Zandbergen [2008] the longi-
tude and latitude error distributions of geographic coordinates were observed to be
symmetrical with a peak around zero. The authors further noticed that the joint dis-
tribution was skewed with a peak around 2 meters, signifying that it was more similar
to a Rayleigh distribution than to a bivariate normal distribution. This notwithstand-
ing, the GPS position error distribution is often modeled as a normal distribution, a
simplification we also make in this paper. An analysis of photos uploaded to Flickr
revealed that mobile phones are frequently used as cameras6. According to a recent
study, mobile phones provided inaccurate positioning with maximum errors exceeding
300m across a wide range of urban areas, where even with good visibility the maxi-
mum error could be greater than 100m [Paek et al. 2010]. Even though smaller posi-
tioning errors were reported in Zandbergen and Barbeau [2011], large errors were not
uncommon either. The latter study also revealed that mobile phones suffer from larger

6http://www.flickr.com/cameras/
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Fig. 3: Geographic distribution of photos tagged with the Horseshoe Falls. The blueish
squares indicate the camera positions of the photos that actually depicted the water-
fall, whereas the reddish squares indicate those that did not show it (e.g. they showed
one of the other parts of the Niagara Falls). The large green square indicates the main
location of the landmark. The straight lines extruding from the smaller squares indi-
cate the direction in which the cameras were facing when the photos were taken.

positional errors than traditional consumer GPS devices. While the so-called assisted-
GPS technology allows mobile phones to obtain a faster lock onto the GPS signal when
the sensor is activated, the question remains whether the time between sensor activa-
tion and photo capture is sufficient for a reliable position estimate to be obtained; this
has not yet been fully explored in the literature.

Compasses are sensitive to a variety of error sources that may affect the orientation
measurement accuracy, such as magnetic interference, vibrations, and velocity dur-
ing measurement [Ojeda and Borenstein 2000]. In our review of the literature on the
accuracy of compass orientations provided by cameras and other mobile devices, we
only found a single relevant study that analyzed the measurement errors of 7 mobile
devices in a harsh indoor industrial environment [Hölzl et al. 2013]. While not neces-
sarily representative for indoor and outdoor environments where photos are typically
captured, in this light the analysis can be considered a worst-case scenario due to the
presence of strong magnetic interference in areas of the industrial hall where the tests
were conducted. The authors found that the digital compasses in the mobile phones
performed comparably to a traditional magnetic compass, yielding a mean orientation
error of approximately 22◦ and a standard deviation of 31◦. The measurement errors
were generally found to be less than 5◦, and in 85% of the measurements the error was
smaller than 20◦, although the maximum error did reach up to 164◦.

3.2. Photo composition
The physical characteristics of a POI and the environment in which it is situated in-
fluence the way in which photos can be taken of it. For example, the Eiffel Tower in
Paris is typically better captured from far away than from up close, whereas the re-
verse is true for the small Manneken Pis statue in Brussels that can only be seen from
at most 50m away. In a similar vein, some POIs can be seen from all directions, such
as the Washington Monument, whereas others can only be seen from limited angles,
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such as the famous façades in the historical city of Petra in Jordan. In photography,
there is a general thought that center-aligned shots are less aesthetically pleasing
than aligning the focal point to the left or right third of the photo [Smith 1797]. The
basic notion is that by aligning objects in the photo towards the golden ratio, one’s eye
will visually follow a narrative in a visual scene. While this is generally understood
not to be a universal law [Field 1845], it is a widely accepted rule of thumb called the
“rule of thirds,” as coined by Smith [1797]. This rule states that the objects of interest
should be located along the four inner intersections when cutting an image into three
by three equally-sized blocks or along their inner edges, which is also evident as the
grid in many camera and cameraphone viewfinders. Whether or not the rule of thirds
is followed by the average photographer, we cannot assume the main point of interest
to be necessarily located in the center of each photo.

3.3. Analysis
To investigate the interplay between the composition of a photo and its location and
orientation measurements in the context of POIs, we queried the Flickr API for georef-
erenced and oriented photos taken within 2.5km of 20 famous landmarks, such as the
St. Peter’s Basilica in Vatican City and the Louvre in Paris, where at least one of the
tags associated with a photo matched the landmark’s official or alternative names in
various languages (ignoring capitalization, diacritics and whitespace) as available in
OpenStreetMap; we used the same 20 landmarks as in our preliminary work on this
topic [Thomee 2013]. We manually inspected the downloaded photos and separated
out those that clearly depicted the landmark from those that clearly did not show it. In
order to mitigate the bias introduced by photographers who took many photos and by
the characteristics of the cameras they used, we restricted the number of photos per
photographer to at most 10 per landmark. We ended up with 1,215 (relevant) photos
that showed a landmarks and with 1,018 (non-relevant) photos that did not.

To understand the joint effect of the compass orientation and photo composition on
the positioning of the landmark, for each of the photos we measured the angle between
the camera’s actual orientation and the orientation in which it should have been held
to capture the landmark in the center of the photo, see Figure 4(a). We see that the
orientation difference distribution of non-relevant photos is almost flat, whereas the
distribution of the relevant photos indicates that a large proportion of them points
towards the landmark, about half of them within 20◦. Still, almost 30% of the relevant
photos have an orientation difference of more than 60◦; given that the field of view of
camera lenses typically ranges between 40◦ and 60◦, larger differences therefore are
unlikely to have been the result of photo composition alone.

We also inspected the distances between the camera positions and the geographical
center of the landmarks, see Figure 4(b). As can be observed, most photos appear to be
taken within close range of the landmarks, although those taken 1–3 kilometer away
are not uncommon either. Given that the effect of any orientation error increases over
distance—to illustrate, an error of 10◦ would lead to a deviation of about 17m for every
100m traveled—it may thus be worthwhile to place a limit on the distance beyond
which a captured photo has no influence. The distance distributions of the relevant
and non-relevant photos are, however, comparable, and do not appear to yield a useful
signal that would allow us to easily distinguish between the two.

4. METHOD
In this section we present a robust method for accurately estimating the location of a
POI given a set of photos, solely by using the position and orientation measurements
that were embedded into the Exif metadata by the cameras that took the photos. The
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Fig. 4: Distribution of the relative camera–POI orientation angles (a) and distances (b)
for relevant and non-relevant photos.

design of our method has been principally driven by the insights we obtained in Sec-
tion 3, for it to successfully cope with erroneous sensor data and off-center framing.

4.1. Definitions
We define the set of photos for a certain POI as P , and the bounding box that encloses
these photos as B. This bounding box could in an extreme case cover the entire surface
of the planet, but without loss of generality we assume that it is much smaller; in
particular since the visibility of a POI by a camera is limited due to the curvature of
the Earth, as well as due to possible structural interference from natural elements
and manmade objects. Each photo p ∈ P is represented by a tuple (υp, θp), where υp
is the camera position of the photo, measured in radians longitude υλp ∈ [−π, π) and
latitude υφp ∈ [−π2 ,

π
2 ), and θp ∈ [0, 2π) is the camera orientation of the photo, measured

in radians clockwise from true north7. With respect to a certain photo p, any point
υb ∈ B can be associated with an orientation θb, which is the compass direction in
which the camera should have been held in order to frame the point in the center
of the photo. We further define the distance in kilometers between the positions υp
and υb as δ(υp, υb), and the angle between the orientations θp and θb as α(θp, θb), as
is illustrated in Figure 5. We consider the shape of our planet as an oblate ellipsoid
according to the WSG84 specification and apply Karney’s formula [Karney 2013] to
compute δ(υp, υb) as the length of the shortest path over the planet’s surface. Applying
Karney’s formula yields the orientation θb as a byproduct of computing δ(υp, υb). To
obtain the angle α(θp, θb) ∈ [0, π] we then only need to consider the smallest angular
difference between θp and θb, given by

α(θp, θb) = π − | |θb − θp| − π| (1)

4.2. Coordinate-based location estimation
We can trivially produce an accurate coordinate estimate for a POI when all photos in
the set have precise location and orientation measurements. Namely, from each posi-
tion where a photo was captured we can first trace a line of sight along the direction

7The compass sensor embedded in a photo camera provides orientations that refer either to true north or to
magnetic north. To avoid incompatible orientations due to the effect of magnetic declination (the angle be-
tween true north and magnetic north, which varies across location and time) we converted magnetic north
orientations to true north using the 11th generation International Geomagnetic Reference Field (IGRF)
model (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html).
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Fig. 5: Within bounding box B the camera is positioned at υp and is oriented θp radians
clockwise from true north (represented by the pinkish area), as is also reflected by
its line of sight. There is another point shown, having position υb and orientation θb
(represented by the blueish area), where the latter reflects the orientation the camera
should have had for it to look straight at the point. The distance δ(υp, υb) is computed
between their positions, and measures how far away the camera and the point are from
each other. The angle α(θp, θb) (represented by the greenish area) is computed between
their orientations, and measures how much the camera should rotate from its current
orientation to focus on the point.

in which the camera was facing, and the location estimate is then the geographic co-
ordinate where all lines of sight intersect, as is illustrated in Figure 6(a). However, as
we discovered in Section 3, position and orientation measurements may not be accu-
rate, and photographers do not necessarily frame a POI in the center of a photo, if at
all. The lines of sight may thus not coincide at a single location, as is illustrated in
Figure 6(b), making it non-trivial to produce an accurate location estimate under real-
world conditions. To address this, our method probabilistically models the lines of sight
and their intersections by taking the variance of sensor measurements and the vari-
ability of photo composition into account. The underlying idea is that, even when the
sensor measurements or the composition of individual photos may not be completely
accurate or may even be completely wrong, the probabilistically modeled lines of sight
will still collectively converge to a single location. Our technique effectively creates
a weight map, where each point in the map reflects the probability of the POI being
located there, such that its most likely location is the point with the highest weight.

Our approach consists of the following five steps:

1. Orientation modeling: For each photo p, we apply a weight to each point υb ∈ B
depending on the angle α(θp, θb) in order to account for errors introduced by the sensor
that provides the orientation measurement, as well as any displacement due to off-
center framing of the POI by the photographer. We model the orientation measurement
error using a one-dimensional half-normal distribution with standard deviation σθ as

Gθ(θp, θb;σθ) =

√
2√
πσθ

e
−α(θp,θb)

2

2σθ
2 (2)

which effectively applies larger weights to points closer to the line of sight than to
those further away, as is shown in Figure 7(a). As a special case for sensors that pro-
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(a) (b)

Fig. 6: Estimating the location of a POI by intersecting the lines of sight from multi-
ple cameras. This can be done accurately when the camera position and orientation
measurements are precise and the POI is framed in the center of each photo (a), but it
cannot be done accurately otherwise (a).

duce perfect orientation measurements, i.e. σθ = 0, we substitute the half-normal
distribution in Equation 2 by the Kronecker delta, using Iverson bracket notation,
Gθ(θp, θb;σθ) = [α(θp, θb) = 0], such that only points along the line of sight receive a
non-zero weight. Applying Equation 2 to each point υb ∈ B for a given photo p pro-
duces a two-dimensional weight map Wθp , where we place its origin at υp.

2. Position modeling: We also apply a weight to each point υb ∈ B depending on the
distance δ(υp, υb) in order to account for errors introduced by the sensor that provides
the camera position measurement. We also model the position measurement error us-
ing a one-dimensional half-normal distribution with standard deviation συ as

Gυ(υp, υb;συ) =

√
2√
πσυ

e
− δ(υp,υb)

2

2συ2 (3)

which effectively applies a weight to points depending on how far away they are from
the camera position, with larger weights applied to points closer to the camera po-
sition than to those farther away, see Figure 7(b). As a special case for sensors that
produce perfect position measurements, i.e. συ = 0, we substitute the half-normal dis-
tribution in Equation 3 by the Kronecker delta Gυ(υp, υb;συ) = [δ(υp, υb) = 0], using
Iverson bracket notation, such that only the camera position itself receives a non-zero
weight. Applying Equation 3 to each point υb ∈ B for a given photo p produces a two-
dimensional weight map Wυp , where we place its origin at υp.

3. Weight convolution: We then obtain a combined weight map Wp for a particular
photo p by convolving the orientation error weights with the position error weights, i.e.

Wp = Wθp ∗Wυp (4)

which ensures each point υb ∈ B is affected by both the camera orientation and position
measurement errors, see Figure 7(c). While the convolution produces an output map
larger than both input maps, we trim its edges such that Wp ends up the same size as
Wθp and Wυp , and thus exactly covers the same area as the bounding box B.
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(a) (b) (c) (d)

Fig. 7: Modeling the camera orientation measurement error (a) and camera position
measurement error (b) of a photo using half-normal distributions, after which they
are combined through convolution (c). By aggregating the resulting weights over all
photos a weight map is obtained that captures the likelihood of a POI being present at
each point in the map (d). The aggregated weight map shown here is generated from
82 photos tagged with the name of the Petronas Twin Towers in Kuala Lumpur, where
the colors represent weight magnitudes, ranging from low (black, red) to high (yellow,
white). The two dense areas near the center each refer to a tower, while the less dense
area in the top-left refers to another tall building, the Menara Public Bank, of which
also photos were taken (despite being tagged with the name of the Petronas towers).

4. Weight aggregation: We sum the combined weights computed for each point υb ∈ B
across all photos p ∈ P to obtain the final weight map WP , where the weight associated
with each coordinate in WP ultimately reflects the likelihood of a POI being situated
at that location, as is shown in Figure 7(d).

5. Coordinate estimation: Given that we only consider a set of photos that refer to a
specific POI, the optimal location estimate υ̂P , is to select the point in the aggregated
weight map with the highest weight. When multiple points share the highest weight a
possible solution is to pick their average as the location estimate, which is what we do
in this article. More formally, we define the set of maxima as

ΥP = arg max
υ

WP (υ) (5)

and then find the average location from this set, given by

υ̂P =

∑
υ∈ΥP

υ

|ΥP |
(6)

where the averaging is applied to the longitude and latitude coordinates separately. To
produce a meaningful location estimate our method requires at least two lines of sight
to intersect, although we can still produce an estimate when no intersections occur by
averaging the points that share the highest weight (i.e. those that lie along all lines of
sight), provided the lines of sight are constrained to be of finite length.

The parameters σθ and συ essentially affect the amount of orientation and location
smoothing applied to the sensor measurements. A threshold χ can further be applied
to the length of the line of sight to prevent weights being computed for distant points
where a POI is unlikely to be present or visible, i.e. each photo p is effectively limited
to its own local bounding box Bp = {υb : υb ∈ B, δ(υp, υb) ∈ [0, χ]} rather than the global
bounding box B. We compute the optimal values of the parameters σθ, συ and χ in
Section 5. Note that the only situation in which our method fails is when a camera is
exactly positioned at the North Pole, since at that location θp is undefined.
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(a) (b) (c) (d)

Fig. 8: We convert a normalized weight map (a) into a binary map through threshold-
ing. To illustrate the effect of thresholding we show a composite image that contains
the binary maps produced for various thresholds (b). Given the binary map produced
for a certain threshold we then trace any outer contours (shown in magenta) and inner
contours (shown in cyan) (c). The final footprint estimate is formed by subtracting the
inner areas from the outer areas (d); the footprint shown here reveals two connected
areas, each referring to a tower of the Petronas Twin Towers.

4.3. Footprint-based location estimation
To produce an estimate of the landmass occupied by a POI, we analyze the aggregated
weight map to identify one or more areas that have sufficient support for the presence
of the POI, where these areas together form its estimated footprint. Specifically, we
want to apply a suitable threshold ω to the weight map in order to only retain the
high-density areas bounded by the level curve LP (ω) = {υ : υ ∈ WP ,WP (υ) = ω} that
together ideally match the actual footprint of the POI as closely as possible. To achieve
this, we apply the following three steps in our implementation:

1. Binary thresholding: The range of the weights in WP depends on the number of
photos in P and the extent of which their lines of sight intersect. In order to be able to
apply a threshold from a fixed range ω ∈ [0, 1] we first normalize the weight map. We
create the binary map BP that separates the high density spatial activity found in WP

from the low density activity, according to

BP (ω) =

{[
WP (υ)

max(WP )
≥ ω

]
: υ ∈WP

}
(7)

using Iverson bracket notation. We illustrate this in Figure 8(b) for varying thresholds.

2. Area isolation: We apply contour tracing [Chang et al. 2004] to the binary map to
extract the outer contours C+

P (ω) and any inner contours C−P (ω) that delineate the ar-
eas where the weight crosses the threshold, as is shown in Figure 8(c). These outer and
inner contours envelope the areas A+

P (ω) and A−P (ω), respectively. To exclude spurious
high-density areas that are unlikely to cover any actual landmass of the POI, we omit
any outer areas that do not include at least one of the points at which the maximum
weight in the aggregated weight map was observed. No areas are produced when all
weights are below the threshold.

3. Footprint estimation: The POI footprint estimate F̂P is finally formed by subtract-
ing the inner areas from the outer areas, i.e.

F̂P (ω) = A+
P (ω) \ A−P (ω) (8)

as is illustrated in Figure 8(d).
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This approach can produce POI footprints of arbitrary shape, which may contain
holes. In Section 5, after having computed the optimal values for σθ, συ and χ, we will
determine the threshold ω that overall generates the best fitting footprint for a POI.

4.4. Continuous vs. discrete representation of the world
Up until now we have presented our method from a theoretical point of view that op-
erates on the world as we know it, in which geographic coordinates are represented as
a bounded function of continuous longitude and latitude values. However, in practice
they are expressed in the discrete domain, in particular because digital global position-
ing systems are discrete by nature. In this article we represent our bounding box B as
a two-dimensional histogram along longitude and latitude using finite addressability,
where each cell in the histogram measures 5E-5◦ longitude by 5E-5◦ latitude, which at
the equator is approximately 5.5m by 5.5m. Each υb ∈ B refers to a unique cell, where
its position υb is represented by the geographic center of the cell. Each photo p ∈ P is
assigned to the cell containing its longitude and latitude coordinates.

5. EXPERIMENTS
We used a semi-automatic approach to create a collection of POIs for evaluation. In
contrast with existing work we do not pick a single geographic coordinate to represent
the location of a POI, since doing so is not always meaningful, e.g. the geographic cen-
ter of Blenheim Palace lies outside the building, while the Golden Gate Bridge spans a
large geographic area. Instead, we extracted the spatial (polygonal) footprints of build-
ings from a 2013 database dump of OpenStreetMap, discarding those that had either
broken polygons or were represented by only a single coordinate, yielding a total of
about 1 million footprints. We manually readded the footprints of a number of famous
landmarks that had been discarded earlier. We then processed a snapshot of over 1
billion public Flickr photos and extracted all georeferenced and oriented photos taken
within 2.5km of one of the buildings and tagged with its name. Since GPS signals
tend to not reach into buildings, the geographic location reported by a camera is often
inaccurate for photos taken indoors. We therefore used a deep learning approach to au-
tomatically determine whether a photo was taken indoors or outdoors8, and only kept
those that had been confidently classified as being both outdoors and non-indoors. We
excluded the photos we had used earlier and once more restricted the number of photos
per photographer to at most 10, while ensuring that photos of at least 4 different pho-
tographers were included per building. We ultimately ended up with 105 landmarks
located all around the world, see Online Appendix A for a complete graphical listing.
The landmarks have varying characteristics in terms of area size, height and shape,
which makes it challenging to accurately estimate their coordinates and footprints.
The total number of photos collected per landmark ranges between 15 and 1913, with
an average of 321 photos.

5.1. Parameter exploration
In order to account for camera position and orientation measurement errors, and the
variety in photo composition styles on the coordinate and footprint estimates produced
by our method, we perform a two-stage parameter exploration. In the first stage we

8We applied an off-the-shelf deep convolutional neural network [Krizhevsky et al. 2012] with 7 hidden lay-
ers, 5 convolutional layers and 2 fully connected ones. The penultimate layer of the convolutional neural
network output was employed as the image feature representation to train the visual concept classifiers.
We used Caffe [Jia et al. 2014] to train an indoor and an outdoor classifier, each being a binary SVM, using
photos taken from the entire Flickr corpus; 50,000 positive examples were crowd labeled or handpicked
based on targeted search/group results, while the same number of negative examples were drawn from a
general pool. We tuned each classifier such that it achieved at least 90% precision on a held-out test set.
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Table I: The explored orientation error (σθ), position error (συ), line of sight length (χ),
and normalized density threshold (ω) parameter values.

Explored parameter values
σθ 0.00, 0.05, 0.10, 0.20, 0.30
συ 0.00, 0.50, 1.00, 2.50, 5.00 (×10−4)
χ 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, 2.00, 2.50, 5.00
ω 0.02, 0.04, 0.06, . . . , 0.96, 0.98, 1.00

Table II: Number of randomly sampled photos (P) and landmarks (L) included in each
subset bin for the coordinate and the footprint parameter exploration stages, as well
as for the performance evaluation against the baseline methods. We repeat the ran-
dom sampling (R) five times for each bin except for the bins that contain all photos of
all landmarks. The weights (W) are used during rank aggregation in both parameter
exploration stages, and represent the relative proportion of estimates in each bin.

Subset bins
Coordinate-
based
parameter
exploration

P 5 10 20 30 40 60 80 100 200 all
L 50 50 49 48 43 34 28 21 11 50
R 5 5 5 5 5 5 5 5 5 1
W 0.15 0.15 0.14 0.14 0.13 0.10 0.08 0.06 0.03 0.03

Footprint-
based
parameter
exploration

P 5 10 20 30 40 60 80 100 200 all
L 30 30 29 26 25 18 16 16 7 30
R 5 5 5 5 5 5 5 5 5 1
W 0.15 0.15 0.14 0.13 0.12 0.09 0.09 0.08 0.03 0.03

Performance
evaluation

P 5 10 20 30 40 60 80 100 200 all
L 25 25 25 24 22 17 11 10 7 25
R 5 5 5 5 5 5 5 5 5 1

determine the optimal parameter values for σθ, συ, and χ, and aim to understand their
interactions with each other and their influence on the accuracy of the coordinate loca-
tion estimate for a landmark. In the second stage we do the same for ω in terms of the
footprint produced for a landmark. Guided by our earlier observations in Section 3, we
explore the parameter values listed in Table I. The values we ultimately select for the
four parameters ideally produce an accurate location estimate for any given landmark,
irrespective of the number of photos that were taken of it. This notwithstanding, we
expect our method to be more forgiving (large σθ, large συ, small χ) when only few
photos are available, since in that case any sensor errors may have a disproportionally
strong impact on the accuracy of the location estimate. We therefore also investigate
how the optimal parameter values differ for varying numbers of photos.

We randomly split our collection of 105 landmarks into 50 for the first stage, 30 for
the second stage, and the remaining 25 will be used for assessing the accuracy of both
our coordinate and footprint location estimation methods using the optimal parameter
values. We create random subsets (bins) ranging between 5 and 200 photos for each
landmark; a landmark is omitted from a bin when it does not have a sufficient num-
ber of photos available. We repeat the random sampling five times for each bin. This
grouping reduces the sources of variability in our dataset and the likelihood that the
observed effects are due to confounding factors, and thus leads to greater accuracy. We
further include an additional bin that contains all photos available for all landmarks.
Essentially, each bin s ∈ S contains a number of landmarks l ∈ Ls for which we created
one or more random samplings r ∈ Rs from the set of photos that were tagged with its
name. We show an overview in Table II.
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Table III: Correlation analysis of the rankings produced in the coordinate parameter
exploration stage for each bin using the Kendall’s tau (τ ) coefficient test.

5 10 20 30 40 60 80 100 200 all
5 1 .399∗∗∗ .280∗∗∗ .299∗∗∗ .329∗∗∗ .280∗∗∗ .144∗∗ -.083 -.313∗∗∗ .134∗∗

10 1 .353∗∗∗ .309∗∗∗ .278∗∗∗ .325∗∗∗ .160∗∗∗ -.084 -.221∗∗∗ .141∗∗

20 1 .322∗∗∗ .273∗∗∗ .211∗∗∗ .214∗∗∗ .021 -.140∗∗ .067
30 1 .295∗∗∗ .350∗∗∗ .137∗∗ .023 -.190∗∗∗ .101∗

40 1 .212∗∗∗ .223∗∗∗ .008 -.175∗∗∗ .112∗

60 1 .152∗∗∗ .034 -.148∗∗∗ .167∗∗∗

80 1 .035 -.091∗ .101∗

100 1 .132∗∗ .030
200 1 -.085

*. Correlation is significant at the .05 level (2-tailed).
**. Correlation is significant at the .01 level (2-tailed).
***. Correlation is significant at the .001 level (2-tailed).

5.1.1. Coordinate parameter exploration stage. We perform subset ranking in which we
evaluate all 225 (σθ, συ, χ) parameter configurations for each of the 10 different coor-
dinate subset bins Sc ⊂ S. Our method produces a coordinate estimate υ̂lr for each
random sampling of photos for a landmark in a bin. Given that our main objective is to
estimate the locations of the landmarks in the test set with minimal error, we measure
the performance of our method for a given parameter configuration by computing the
mean absolute error (MAE) over all the coordinate estimates in bin s ∈ Sc, given by

MAEs =
1

|Ls||Rs|
∑
l∈Ls

∑
r∈Rs

min
υl∈Fl

δ(υ̂lr, υl) (9)

where for each estimate we compute the distance to its closest coordinate on the foot-
print of the landmark Fl. For each bin we produce a different ranking of parameter
configurations, ordered by the MAE.

To determine to what extent the parameter configurations are specific to a bin, we
perform pairwise comparisons and compute the similarity of the rankings using the
Kendall’s tau (τ ) coefficient. In Table III we report several statistically significant cor-
relations between the rankings computed for each bin. Of interest is the inverse re-
lationship observed between the correlation strength and the number of photos used
for computing the location estimates. This relationship indicates that the number of
photos available is a determining factor for whether a particular parameter configura-
tion will likely perform well. This notwithstanding, for the bins containing 60 or less
photos we observe several positive, medium-size correlations that indicate similarities
in the rankings, which suggests that certain parameter configurations are more tol-
erant to the availability of photos and are capable, to some extent, of performing well
irrespective of that. When we assume a qualitative approach and compare the top con-
figurations produced for each bin, we observe that as the number of photos in a bin
changes, better performing configurations tend to have the following parameters:

(i) σθ = 0.20 to 0.30 for 5 photos vs. σθ = 0.00 to 0.10 for ≥10 photos.
(ii) συ = 0.00 to 1.00 for ≤10 photos vs. συ = 2.50 to 5.00 for ≥20 photos.

(iii) χ = 0.10 to 0.50 for ≤10 photos vs. χ = 1.00 to 5.00 for ≥60 photos.

The results are mostly in concordance with our earlier hypothesis that our coordinate-
based estimation method needs to be more flexible (large σθ, small χ) when fewer
photos are available, while it can be more strict (small σθ, large χ) when more photos
are available. We surmise that a large value of σθ already causes enough smoothing to
not additionally require a large value of συ, and vice versa.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 B. Thomee et al.

In order to pick a single overall best configuration we first perform rank aggre-
gation to select the parameter configuration that is ranked highly in as many bins
as possible. The problem of selecting a parameter configuration that is optimal for the
general case of estimating the location of a landmark is a typical instance of a multiple-
winner voting problem. Although the Borda Count and the Condorcet methods are the
most widely known and studied techniques for such problems, we choose rank aggrega-
tion [Dwork et al. 2001], which has ties with the aforementioned methods, but is better
at filtering out noise. For rank aggregation we use an implementation9 for R with the
settings recommended by Pihur et al. [2007]. We can formalize our goal within the
framework of the following minimization problem. Find κ∗ such that

κ∗ = arg min
κ

∑
m∈M

d(κ,Em) (10)

where Em is an ordered list of objects produced by a measure m ∈M , d an appropriate
distance function, and the minimization is carried out over all possible ordered lists
κ of size |Em|. In our case, objects are the parameter configurations and each ranked
list κ is a bin. We rank the lists in ascending order according to the MAE that each
parameter configuration achieved, and subsequently produce their aggregated ranking
using the Monte Carlo cross-entropy algorithm [de Boer et al. 2005; Rubinstein and
Kroese 2005]. We apply a weighted aggregation that optimizes a distance criterion,
e.g. Kendall’s tau and Spearman’s Footrule distance, and allows for a far more objective
and automated assessment of the results. We use the relative proportion of estimates
in each bin (see Table II) as weights; since the locations are estimated for many more
landmarks in the smaller bins than in the larger bins, we assign the former more
importance during rank aggregation than the latter. The result is a list with the top
positions granted to the parameter configurations that overall performed best across
all bins. We finally select the one that has the lowest average MAE across all bins,
which has as parameter values σθ = 0.00, συ = 5.00 and χ = 0.50. In Figure 9 we
illustrate the performance of our method using these values on the training set of 50
landmarks; the actual evaluation using the test set of 25 landmarks is presented in
Section 5.3.

5.1.2. Footprint parameter exploration stage. To determine the optimal value of the nor-
malized density threshold w we again perform subset ranking, this time on all 50
(ω;σθ = 0.00, συ = 5.00, χ = 0.50) parameter configurations for each of the 10 different
footprint subset bins Sf ⊂ S. Our method produces a footprint estimate F̂lr for each
random sampling of photos for a landmark in a bin. We compute the mean absolute
error over all the footprint estimates in bin s ∈ Sf , given by

MAEs =
1

|Ls||Rs|
∑
l∈Ls

∑
r∈Rs

J(F̂lr,Fl) (11)

where J(F̂lr,Fl) is the Jaccard index between the footprint estimate and the footprint
of the landmark. After performing subset ranking and rank aggregation based on the
MAE, we obtain our overall best footprint-based location estimation parameter con-
figuration with the value ω = 0.8, which achieves an average of 13% overlap with the
footprints of the POIs in the training set, see Figure 9.

9http://cran.r-project.org/web/packages/RankAggreg/
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Fig. 9: Distance (MAE) between the footprints of the 50 POIs in the first training set
and the coordinate estimates produced by our method for different photo subsets (left).
Overlap (MAE) between the footprints of the 30 POIs in the second training set and
the footprint estimates produced by our method for varying thresholds ω (right). Our
methods used the overall best parameter configuration (σθ = 0.00, συ = 5.00, χ = 0.50).

5.2. Baselines
To place the actual location estimates produced by both our methods into context, we
compare against several baselines from the research literature. To select our baselines,
we predominantly focused on techniques for which good parameters (if needed) have
been reported in the literature in the context of POI detection and for which verified
open source code was available, or either implemented in open source toolkits such
as for instance Weka; most methods proposed in the literature are based on cluster-
ing. Given that we aim to estimate POI locations solely based on capture metadata,
techniques that required analyzing and classifying visual content (e.g. [Popescu and
Shabou 2013]) fall outside the scope of the current paper.

5.2.1. Averaging-based technique. The averaging method considers the average location
from where photos were taken as the location estimate of the POI. This method as-
sumes that on average people will take photos from all positions around a POI. Note
that the averaging method cannot produce a footprint estimate.

5.2.2. Clustering-based techniques. Clustering-based techniques have an advantage over
the averaging baseline in that they incorporate a mechanism for automatically detect-
ing the number of clusters present in the photo distributions, which enables them to
more easily identify supposed outliers and to focus only on the photos that are more
likely to be actually taken of the POI. For each of the following baselines we retain only
the cluster to which the highest number of photos has been assigned. The center of this
cluster is then considered as the estimate of the location of the POI, and the surface
area covered by the cluster as its footprint. In case multiple clusters share the highest
number of photos, the coordinate estimate is formed by averaging their centers, while
the footprint estimate is formed by the union of their surface areas.

EM [Dempster et al. 1977] starts with a single cluster and randomly splits the dataset
into a number of folds. The approach then computes a probability distribution for each
data point within each fold that indicates to what extent it belongs to each cluster.
If the average log-likelihood of the data across all folds increases with respect to the
previous iteration, the number of clusters is increased and the process repeats.

X-means [Pelleg and Moore 2000] is an extension of k-means. The approach itera-
tively applies k-means to cluster the data and then determines which cluster(s), if any,
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should be split into two to improve the local structure using the Bayesian Information
Criterion (BIC). We initialize the clustering process with 1 cluster and let it run until
termination. The final clustering is the one with the highest global BIC score.

DBSCAN [Ester et al. 1996] forms clusters of points where each is surrounded by a
sufficient number of nearby other points, unless the point itself is a border point. In the
same way as for our own methods, we determine the optimal parameters by exploring
a range of values reported in the literature10, yielding the values MinPts = 3 and
Eps = 0.002◦.

P-DBSCAN [Kisilevich et al. 2010] is an extension of DBSCAN and is specifically
designed for clustering georeferenced photos. The number of unique users in a cluster
plays an important role, while the method also takes the local density around a photo
into account for deciding whether to add nearby photos to a cluster. Our parameter
exploration11 yielded the values MinOwners = 3, Eps = 0.005◦ and Addt = 0.10.

5.2.3. Line of sight-based techniques. In the literature we encountered two techniques that
exploited the direction in which the camera was facing. One of these techniques is
compass clustering [Lacerda et al. 2012; Hao et al. 2014], although both papers leave
out vital information regarding the underlying clustering technique used and its pa-
rameterization, making this technique difficult to reproduce. The other method, de-
scribed below, was not formalized in its respective paper nor did it evaluate its perfor-
mance. Nonetheless, we included it in our evaluations because it is closely related to
our method and it was straightforward to implement.

Geo-relevance [Epshtein et al. 2007] weights locations by the frequency of which
they lie within the fields of view of the cameras that took the photos. A field of view
(FOV) depends on several factors, such as camera model and type of lens, and is not
straightforward to compute. To approximate the FOV we extracted the focal length f
from the Exif metadata and looked up the camera’s CCD/CMOS sensor dimensions d
in order to compute the FOV according to fov = 2 atan d

2f . When the focal length or
sensor dimensions could not be determined, we assumed a default FOV of 58.72◦. The
method yields a coordinate estimate by averaging all locations sharing the highest
weight, while its footprint estimate is produced by applying connected components
analysis to these locations, where we treat each resulting component as a cluster. We
used the same discrete representation of the world as our own method (see Section 4.4)
to compute the coordinate and footprint estimates.

5.3. Evaluation
To perform an unbiased evaluation, we compare the performance of the methods on the
tasks of coordinate and footprint location estimation. We evaluate the performance
for all methods according to the MAE. On the task of estimating the coordinates of
the landmarks in the test set, see Figure 10(a), we observe that our method overall
outperforms all baselines by a large margin. While for the subsets containing up to
20 photos the performance of our method and DBSCAN is comparable, for the other
subsets the performance differences are more pronounced. For example, for 200 photos
our method achieves a MAE of only 6.7m, whereas the best baseline for this subset,
EM, has a MAE of 18.8m; when considering all photos our method obtains a MAE of
19.6m, while DBSCAN has a MAE of 42.5m. On the task of estimating the footprints,
see Figure 10(b), our method achieves a higher overlap than all baselines for each

10We explored all combinations of MinPts ∈ {3, 4, 5, 10}, Eps ∈ {0.001, 0.002, 0.005}.
11We explored all combinations of MinOwners ∈ {3, 4, 5, 10}, Eps ∈ {0.001, 0.002, 0.005}, Addt = 0.10.
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Fig. 10: Distance (in log-scale) achieved by all methods for estimating the landmark
coordinates on different test subsets, where lower is better (a). Overlap between the
footprints of the landmarks in the test set and the footprint estimates produced by all
methods except the Averaging method, where higher is better (b). All methods used
their overall best parameter configurations, if applicable.

subset; while the overlap of the baselines actually decreases for the larger subsets, it
keeps increasing for our method. When using all photos per POI photos our method
obtains an average overlap of 17.6%, while the best baseline, DBSCAN, achieves 6.0%.
We show some success and failure cases of our method in Online Appendix B.

We further look at the pairwise differences of the computed error estimates and
evaluate the significance of the observed improvements. To choose an appropriate sta-
tistical test, we first examine the distribution of our data using the Anderson-Darling
and Cramer-von Mises tests. These tests are known to perform better compared to the
Kolomorov-Smirnov test [Stephens 1974; Thode 2002], although in large samples they
tend to be significant even for scores that are marginally different from a normal dis-
tribution; we thus interpret them in conjunction with Q-Q plots, while also accounting
for the skew and kurtosis values. Since in all cases we observe a non-normal distribu-
tion in the absolute differences of the estimate errors, we opt for the Mann-Whitney
test and report our results at an α level of .05. Finally, to take an appropriate control
of Type I errors in multiple pairwise comparisons we apply the Bonferroni correction.

Table IV shows the Mann-Whitney test results for all comparisons between our
method and the baselines, for the coordinate and footprint methods. In the case of
the coordinate method, our method achieved a significantly smaller estimate error
compared to the other baselines. In most cases, this significant difference represents
a medium to large effect, with the smallest improvement being over the DBSCAN
method and the largest improvement being over the Averaging method. With respect
to the footprint method, our method attained a significantly higher overlap with the
POIs over all baselines. This finding represents a medium to huge effect, with the
smallest improvement being over the DBSCAN method and the largest improvement
being over the Geo-relevance method. The Mann-Whitney test results indicate that,
overall, our method significantly outperforms all baselines, at varying degrees.

While error assessment measures such as the MAE allow to evaluate the predic-
tion quality of the methods, they do not quantify the relative difference of their per-
formance. Therefore, we also compute the coefficient of determination R2, which is a
measure of the relative improvement of our prediction method over the other baseline
methods. Negative R2 values are obtained whenever our method underperforms com-
pared to a baseline. Note that for the footprint estimates we use the Jaccard distance
instead of the Jaccard index, since R2 expects error measurements. The performance

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 B. Thomee et al.

Table IV: Mann-Whitney significance results of the coordinate and footprint estimate
differences between the Density method and all baselines.

(Coordinate) Averaging EM X-means Geo-relevance DBSCAN P-DBSCAN
(Mdn) (74.16) (40.26) (35.46) (27.79) (14.64) (33.42)

U = 1.62E+5 U = 2.39E+5 U = 2.51E+5 U = 2.49E+5 U = 3.07E+5 U = 2.59E+5
Density z = −20.16 z = −12.65 z = −11.43 z = −11.70 z = −5.90 z = −10.65
(2.44) p < .001 p < .001 p < .001 p < .001 p < .001 p < .001

r = −0.68 r = −0.43 r = −0.39 r = −0.40 r = 0.20 r = −0.36

(Footprint) EM X-means Geo-relevance DBSCAN P-DBSCAN
(Mdn) (.0108) (.0176) (.0004) (.0833) (.0419)

U = 1.51E+5 U = 1.70E+5 U = 8.32E+5 U = 2.69E+5 U = 2.11E+5
Density z = −21.01 z = −19.09 z = −27.96 z = −9.40 z = −15.08
(.1446) p < .001 p < .001 p < .001 p < .001 p < .001

r = −.71 r = −0.65 r = −.95 r = −.32 r = −.51

Table V: Performance of our overall best method against all baselines. The inside col-
umn indicates the percentage of coordinate estimates that were within the footprint of
the landmark. The time columns indicate how much time each method needed for pro-
cessing all photos for the 105 landmarks, averaged per photo, computed with a 2013
MacBook Pro using implementations in Java of each method.

Coordinate estimates Footprint estimates
Inside (%) MAE ± SD R2 Time (ms) MAE ± SD R2 Time (ms)

Averaging 14.79 113.58± 127.29 72.37% 2.84E-2
EM 24.32 74.58± 116.36 57.89% 8.03E+1 .04± .06 22.19% 1.02E+2
X-means 20.86 69.19± 102.88 47.68% 8.14E-2 .05± .07 20.45% 4.67E-1
Geo-relevance 25.74 411.69± 712.21 98.81% 1.87E+3 .01± .03 26.23% 1.87E+3
DBSCAN 31.36 44.50± 77.70 .30% 1.05E-1 .10± .09 11.01% 5.29E-1
P-DBSCAN 24.37 57.69± 82.54 20.70% 1.14E-1 .07± .08 16.62% 5.32E-1
Density 46.21 33.81± 83.06 - 6.48E-1 .16± .11 - 1.13E+0

scores shown in Table V reveal that our method significantly outperforms the baseline
methods on both the coordinate and footprint estimation tasks, with the exception of
DBSCAN that performs comparably on coordinate estimation. Yet, the percentage of
correctly estimated coordinates (i.e. those falling inside the POI footprints) achieved
by our method is 46.2%, substantially outperforming the 31.4% obtained by DBSCAN.

The average time our method needed to process a photo was around eight times as
slow as X-means, and six times as slow as DBSCAN and P-DBSCAN on the coordinate
task and about twice as slow compared to all three on the footprint task. In contrast,
the EM method achieved about half the accuracy in the coordinate estimation task
and about a quarter of the overlap in the footprint estimation task, while being a
factor 100 slower to compute compared to our method. The Geo-relevance method did
not perform as well as the other methods, because it gives equal weight to all locations
in the fields of view of infinite length. This results in a large geographic area where
each location has an equal weight, producing coordinate estimates far away from the
POIs and footprint estimates many times too big.

6. CONCLUSIONS
We proposed a novel algorithm for the localization of POIs in terms of their geographic
coordinates and their footprints. Our method exploited the geographic positions and
compass orientations measurements supplied by modern cameras. We took the pos-
sible errors produced by the sensors into account, as well as different styles of photo
composition, and modeled the world as a probabilistic map where each coordinate in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. V, No. N, Article A, Publication date: January YYYY.



Finding Social Points of Interest from Georeferenced and Oriented Online Photographs A:21

the map ultimately reflected the likelihood of a POI being present at that location. We
extensively analyzed and evaluated our method on a set of 105 POIs, estimating their
coordinates and footprints significantly more accurately than state of the art baselines
from the research literature. Our coordinate estimation method produced correct esti-
mates 46.2% of the time, while achieving an average distance error of less than 100m
with just 5 photos per POI and an error of less than 10m when using 80+ photos.
Our footprint estimation method reached an average overlap of 16% with the actual
footprint of a POI, and even achieved an overlap of 27% when using 200 photos. The
results suggest that even with few geotagged and oriented photos referring to an un-
known POI our method is able to pinpoint its location within a small distance of where
it is really located, where the coordinate estimate gets more accurate with additional
photos. The estimated footprint further tends to overlap its actual footprint, where the
footprint estimate also gets more accurate with more photos. Our work opens doors
to automatically discovering POIs by analyzing all photos (even those without tags)
taken within any geographic area by inspecting the produced density maps for local
maxima, as well as automatically detecting local events by analyzing streams of re-
cently taken and uploaded photos (see Online Appendix C for examples). We aim to
address such problems in future work.
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